|'o1? wio'nn yim ny (BIGDATA) o712 n'haxna OPEN SOURCE wio'n
Elasticsearc -I

IPYIN |'0 INN'X

17021 WIN'Y NIY¥NAXA ,D1'D .NRNNRD DIYN 10NN TR INTENN VOV WID'N NIAI7IDY
v 7w wiorn yxa7 nnnwoxa Elasticsearch & Solr, Lucene nnaim niMo Tiza wio'n
1901 7V WIDN . TAXK MY 7V ONT'A7 N710' NI'R VTN NIND TWKD DA ,0'71TA YT' NANND
W17 0'0'1ON X DNIX VTN NANAN NNAIN N7227 0'TENn 09 02 1D 72N o'nvy

TNIMA D7NWUNY 17X WI9'N 'WIINA WIN'YUN DX 0'D91N WID'NN



What is real-world search anyway?

Let’s face it - not all the data we handle is easy to query. In fact, most of it is
actually pretty tough to work with. This is often times because a lot of the
data we process and handle is unstructured. Be it logs, archived documents,
user data, or text fields in our database that we know contain information
that can be useful, but we just don’t know how to get to it.

As developers, we tend to fight that. Our first reaction will always be to try
and structure the unstructured. This is the challenge we like to rise to as
professionals, and that is truly great. But sometimes it just makes sense to
stop fighting reality and use a set of tools that is more suited for this task.
In some cases this will save many resources and hair-pulling. In other cases,
I don’t know whether they are better or worse, we didn't even realize we had
a gold mine of information at our fingertips so we haven’t even tried doing
something with it.

During the past 10 years or so the field of information retrieval - text
retrieval and search engines in particular - has evolved greatly. Search
engines have been built and scaled, and within a few years did the
impossible. Nobody thought we could handle that scale of data, or to make
sense out of it all. Would you have invested in Google before 2000?

Search engines do not exist only on 3rd party websites like Google or Bing.
Quite a few search engine libraries that are meant to be used in both open-
and closed-source projects were released under various licenses. The most
notable of all is probably Apache Lucene (http://lucene.apache.org/), a
search engine library released as open-source for the first time in 1999.
Since then, Lucene has made giant steps and is developed actively to this
day, making new landmarks every few months by releasing new features or
major improvements.


http://lucene.apache.org/

But Lucene is just a search library. To scale it out so it can handle large
amounts of data you need to have inter-server communications, and some
logic to split your data between them. For that Lucene offers Solr, a search
server that acts as a wrapper around Lucene indexes. Another option,
created by other Lucene project members, is Elasticsearch. Both Solr and
Elasticsearch are released under the same open-source license as Lucene’s,
with my personal favorite being Elasticsearch, due to its novel approach for
scaling out indexes and super-easy to use API (everything is doable using
REST calls over HTTP).

Using these technologies (Lucene, Solr or Elasticsearch) it is very easy to
add full-text search capabilities to any type of application - running on the
desktop, web, cloud or mobile. There are a few things to figure out - like
how to feed the data from your data sources, how to make sure the search
engine has the last version of our data at all times, and how to process it
correctly so common searches are effective and perform well. Every project
has a different best practice to those challenges, they are hardly ever the
same. But once you figured those out, browsing your data is suddenly a
breeze.

As it turns out, full-text search capabilities are only the tip of the iceberg. As
people started using search technologies to perform full-text searches, new
capabilities came about. Leveraging the data and insights search engines can
provide on our data, we can do a lot of interesting stuff. For example, we can
detect typos and offer corrections; we can find similar documents so we can
remove or merge them (also known as record linkage); or we can use this to
offer customers at our shop similar products they can add to their cart.

Other, more advanced, modern usages of search technologies that worth
noting include geo-spatial search (using shapes like points, circles or
polygons representing locations on Earth to find data tagged with more
shapes; for example finding the nearest restaurant to the user’s location),
image search by color scheme (http://blog.gbox.io/boston-elasticsearch-


http://blog.qbox.io/boston-elasticsearch-meetup-scoring-images-by-color

meetup-scoring-images-by-color), entity extraction and other Natural-
Language-Processing methods to further analyze texts and improve insights
on them.

There is a great set of tools at our disposal when using search technologies,
far more than we can even list in this blog post. Nowadays this is not only
about full-text search anymore (although obviously this is definitely still
supported and is better than ever before!). Being familiar with those tools
and with best practices for using them, we can start giving thought on how
we can use them in our project - whether in an automated process or
exposed via some UI to our users to give them (and us!) added value.

Modern search engines are built to be scalable and performant. With correct
planning you can handle large amounts of data easily (even BigData, if you
don’t mind the buzzword), as well as many concurrent users issuing many
requests, by spreading your data across multiple servers. Because they are
so performant, they can offer real-time search capabilities even on large sets
of data. The most impressive use of this is most likely Elasticsearch’s
Kibana (http://demo.kibana.org) dashboard to plot graphs in real-time out
of an intensive stream of raw data, for example Apache HTTP server logs.

The field of search engines and information retrieval is moving ahead very
fast. There are still many challenges to tackle, but there’s already a lot to
gain from this quickly evolving set of technologies. Just a quick look at
recent history will show you companies that were sold in billions not
because they have a great product, but because they were able to collect a lot
of data and extract insights out of it.

I'm a search technologies, distributed systems and architecture expert.

Apache Lucene.NET committer, Elasticsearch savant, and the author of RavenDB in Action
(http://manning.com/synhershko/).

I'm a frequent speaker at international conferences and provide on-site training and consultancy senices around the
world.


http://blog.qbox.io/boston-elasticsearch-meetup-scoring-images-by-color
http://demo.kibana.org/
http://manning.com/synhershko/

Currently self-employed as a consultant and freelance developer doing lots of
interesting projects world-wide.




	21-הרשקו עברית
	21-itamar-012014

